Tecnología Ignacio Manuel Fernandez 29/02/2024

¿Qué es Machine Learning?

¿Qué es Machine Learning?
 

El Machine Learning (ML) -traducido al español como “Aprendizaje Automático”- es un sub-campo de la Inteligencia Artificial que busca resolver el “cómo construir programas de computadora que mejoran automáticamente adquiriendo experiencia”.

Esta definición indica que el programa que se crea con ML no necesita que el programador indique explícitamente las reglas que debe seguir para lograr su tarea si no que esta mejora automáticamente.

Grandes volúmenes de datos están surgiendo de diversas fuentes en los últimos años y el Aprendizaje Automático relacionado al campo estadístico consiste en extraer y reconocer patrones y tendencias para comprender qué nos dicen los datos. Para ello, se vale de algoritmos que pueden procesar Gigas y/o Terabytes y obtener información útil.

 

Una Definición Técnica

“A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.”

La experiencia E hace referencia a grandes volúmenes de datos recolectados (muchas veces el Big Data) para la toma de decisiones T y la forma de medir su desempeño P para comprobar que mejoran con la adquisición de más experiencia.

Aproximación para programadores

Los programadores saben que diversos algoritmos de búsqueda pueden tomar mucho tiempo en resolverse y que cuanto mayor sea el campo de búsqueda crecerán potencialmente las posibilidades de combinación de una respuesta óptima, haciendo que los tiempos de respuesta tiendan al infinito o que tomen más tiempo de lo que un ser humano tolerar (por quedarse sin vida o por impaciencia).

Para poder resolver este tipo de problemas surgen soluciones de tipo heurísticas que intentan dar “intuición” al camino correcto a tomar para resolver un problema. Estos pueden obtener buenos resultados en tiempos menores de procesamiento, pero muchas veces su intuición es arbitraria y pueden llegar a fallar.

Los algoritmos de ML intentan utilizar menos recursos para “entrenar” grandes volúmenes de datos e ir aprendiendo por sí mismos. Podemos subdividir el ML en 2 grandes categorías: Aprendizaje Supervisado o Aprendizaje No Supervisado.

Entre los Algoritmos más utilizados en Inteligencia Artificial encontramos:

  •  Arboles de Decisión.
  • Regresión Lineal.
  • Regresión Logística.
  •  K-Nearest Neighbor.
  • PCA (Principal Componen Analysis).
  • ·SVM.
  • Gaussian Naive Bayes.
  • K-Means.
  • Redes Neuronales Artificiales.
  • Deep Learning.
  • Clasificación de imágenes.

En Conclusión

Creo que el Machine Learning es una nueva herramienta clave que posibilitará el desarrollo de un futuro mejor para la sociedad brindando inteligencia a robots, coches y casas. Las Smart Cities, el IOT ya se están volviendo una realidad y también las aplicaciones de Machine Learning en Asistentes como Siri, las recomendaciones de Netflix o Sistemas de Navegación en Drones. Para los ingenieros o informáticos es una disciplina fundamental para ayudar a crear y transitar este nuevo futuro.

Ignacio Manuel Fernandez - Business Analyst Prisma Medios de Pago

Te puede interesar

Guerra de cerebros en Meta: superinteligencia genera tensiones en la empresa

La estrategia de Mark Zuckerberg para dominar el futuro de la inteligencia artificial ha desencadenado una crisis interna en Meta que amenaza con desestabilizar la estructura de talentos de la compañía tecnológica

Musk reconoce liderazgo de Google en inteligencia artificial

Una declaración inesperada de Elon Musk ha sacudido el panorama tecnológico al reconocer públicamente que Google mantiene la posición más ventajosa para liderar el desarrollo de inteligencia artificial a nivel global

Según Goldman Sachs la Inteligencia Artificial está aumentando el desempleo en trabajadores más jóvenes

Los efectos disruptivos de la inteligencia artificial en el mercado laboral estadounidense comienzan a manifestarse con especial intensidad entre los profesionales tecnológicos de menor edad, según revela un análisis divulgado por Goldman Sachs

Airbnb prevé transformación total hacia IA y agentes autónomos

La industria tecnológica asiste a una declaración revolucionaria que podría redefinir el panorama de las aplicaciones móviles

OpenAI lanza GPT-5 con 4 variantes y memoria persistente

La compañía liderada por Sam Altman ha presentado oficialmente su quinta generación de inteligencia artificial generativa, marcando un hito tecnológico que promete revolucionar la interacción entre humanos y sistemas automatizados

¿Podrá la IA desarrollar lenguaje propio no comprensible para humanos? El Nobel de Física Geoffrey Hinton cree que sí

El laureado Nobel de Física Geoffrey Hinton planteó recientemente una preocupación fundamental sobre la evolución futura de los sistemas de inteligencia artificial: la posibilidad de que estos desarrollen métodos de comunicación interna completamente inaccesibles para la comprensión humana

Guerra en la nube: Microsoft revela ingresos de Azure y permite primera comparación real con AWS

La industria tecnológica experimentó un momento histórico esta semana cuando Microsoft Corporation decidió romper años de opacidad financiera al divulgar por primera vez las cifras exactas de ingresos de su división de computación en la nube

Tim Cook abre Apple a compras masivas para competir en IA

La compañía de Cupertino experimenta un cambio estratégico fundamental en su aproximación al crecimiento corporativo, abandonando su tradicional cautela hacia las grandes adquisiciones para adoptar una postura agresivamente expansiva en el mercado de inteligencia artificial

Trump condiciona fondos federales a regulación favorable a la Inteligencia Artificial

La administración estadounidense intensifica su estrategia para evitar restricciones regulatorias sobre inteligencia artificial mediante un mecanismo de presión financiera dirigido hacia los gobiernos estaduales