Tecnología IGNACIO MANUEL FERNANDEZ 15/03/2024

Los tres pilares del aprendizaje automático: supervisado, no supervisado y por refuerzo

 

Siguiendo la línea de la nota "¿Qué es Machine Learning?" 

En la nota anterior, exploramos el concepto de Machine Learning (Aprendizaje Automático) a grandes rasgos, definiendo su esencia y destacando su impacto en la sociedad actual. Ahora, profundizaremos en los tres tipos principales de aprendizaje automático: supervisado, no supervisado y por refuerzo.

 1. Aprendizaje supervisado:

En este tipo de aprendizaje, el sistema recibe un conjunto de datos con ejemplos etiquetados. A partir de estos ejemplos, el sistema aprende a realizar una tarea específica, como clasificar correos electrónicos como spam o no spam, o predecir el precio de una vivienda.

Ejemplos de algoritmos:

·          K-Nearest Neighbors (KNN)

·          Regresión lineal

·          Regresión logística

·          Máquinas de vectores de soporte (SVM)

·          Redes neuronales

 2. Aprendizaje no supervisado:

En este tipo de aprendizaje, el sistema no recibe ejemplos etiquetados. Debe encontrar patrones y relaciones en los datos por sí mismo. Se utiliza para tareas como agrupar clientes en diferentes segmentos o detectar anomalías.

·          Ejemplos de algoritmos:

·          K-means clustering

·          Análisis de componentes principales (PCA)

·          Detección de anomalías

 3. Aprendizaje por refuerzo:

En este tipo de aprendizaje, el sistema aprende a tomar decisiones en un entorno interactivo. Recibe una recompensa o penalización por cada acción que toma, y aprende a tomar las acciones que le dan la mayor recompensa a largo plazo. Se utiliza para entrenar robots o agentes para jugar juegos.

Ejemplos de algoritmos:

·          Q-learning

·          Deep Q-learning

·          Actor-critic

Aplicaciones de ML y Ejemplos

Las aplicaciones más frecuentes del Machine Learning son:

 Reconocimiento de Imágenes

Se utilizan diversos algoritmos para poder comprender imágenes sobre todo Deep Learning, encontrar algo en particular o agrupar zonas. Sabemos que las imágenes son conjuntos de pixeles continuos y cada uno contiene información del color que tiene que “iluminar” (por ejemplo RGB). Los ejemplos comunes son los de Reconocimiento de Caracteres ópticos, es decir, encontrar letras, agruparlas, encontrar espacios y poder descifrar textos y el otro ejemplo es el de detectar personas en imágenes, presencia humana en cámaras de seguridad o más recientemente se utilizan redes neuronales convolucionales para detectar rostros: reconocimiento facial, seguramente más de una vez Facebook fue capaz de localizar a tus primos y hermanos en tus álbumes de fotos.

 Reconocimiento de Voz

A partir de las ondas de sonido sintetizadas por el micrófono de tu ordenador, smartphone o de tu coche, los algoritmos de Machine Learning son capaces de limpiar ruido, intuir los silencios entre palabras y comprender tu idioma para interpretar tus ordenes, ya sea “Siri, Agregar un Recordatorio para el lunes que viene” o “Ok Google, Poner música de Coldplay” o hasta hacer reservas y pedir pizza. Parte del reconocimiento se hace mediante el Procesamiento del Lenguaje Natural (NLP en inglés).

 Clasificación

Consiste en identificar a que Clase pertenece cada individuo de la población que estamos analizando. Se le asignará un valor discreto de tipo 1, 0 como en la clasificación de Spam o no. También podría ser clasificar si un tumor es benigno o no o al clasificar flores según las características obtenidas.

 Salud

Dados los síntomas presentados por un paciente en una base de datos de pacientes anónimos nuestra máquina deberá ser capaz de predecir si es probable que esa persona pueda sufrir una enfermedad específica. Este tipo de Aprendizaje Automático es de suma delicadeza y puede servir como soporte para un equipo médico.

 Economía y Finanzas

Se podrá dar soporte a analistas financieros intentando predecir determinadas cotizaciones de acciones en la Bolsa, ayudando a decidir si conviene comprar, mantener o vender.

  Ignacio Manuel Fernandez - Business Analyst Prisma Medios de Pago

 

 

 

 

Te puede interesar

Trump aprueba la venta de la red social Tik Tok por 14.000 millones de dólares a consorcio

La administración estadounidense formalizó mediante orden ejecutiva la autorización para que un consorcio empresarial doméstico adquiera las operaciones de la plataforma china en territorio norteamericano

Nvidia apuesta 5.000 millones por Intel en crisis

La industria de semiconductores presenció esta semana una de las alianzas más significativas de los últimos años cuando Nvidia confirmó una inversión estratégica de 5.000 millones de dólares en Intel, marcando un punto de inflexión para el fabricante de procesadores que atraviesa su peor crisis en décadas

Microsoft rechaza derechos para la IA: "mimetismo, no conciencia"

La industria de la inteligencia artificial experimenta un debate fundamental sobre la naturaleza de los sistemas automatizados avanzados y si estos merecen algún tipo de consideración moral o protección legal

OpenAI ofrece u$d 393.000 por "estratega de contenido", nueva era salarial de la Inteligencia Artificial

La revolución de la inteligencia artificial está redefiniendo completamente el mercado laboral de contenidos digitales, transformando profesiones tradicionalmente subestimadas en posiciones estratégicas con remuneraciones extraordinarias

Gigantes tecnológicos halagan a Trump en cumbre de IA

La Casa Blanca se convirtió en epicentro de una convergencia estratégica sin precedentes entre el poder político estadounidense y los principales referentes de la industria tecnológica global

Gemini 2.5 Flash: Google desafía dominio de Photoshop

La industria del software de edición gráfica enfrenta una disrupción tecnológica significativa tras el lanzamiento oficial de Gemini 2.5 Flash, la propuesta de inteligencia artificial de Google que amenaza directamente el liderazgo histórico de Adobe Photoshop en el mercado de manipulación digital de imágenes

Chatbots de compañía dominan el 20% del mercado global de IA

El ecosistema de aplicaciones de inteligencia artificial presenta una composición mucho más diversa y controversial de lo que cabría esperar, según revela el más reciente análisis semestral publicado por la prestigiosa firma de inversión Andreessen Horowitz

Trump invierte en Intel y prepara más adquisiciones en tecnológicas

La administración estadounidense estableció un precedente sin antecedentes al adquirir una participación del 10% en Intel Corporation, marcando el inicio de una estrategia intervencionista que el presidente Donald Trump planea extender hacia otras compañías estratégicas del país

Spotify integra mensajería instantánea para retener usuarios: ¿Una nueva red social?

La plataforma de streaming musical Spotify implementa una transformación estratégica significativa al incorporar capacidades de comunicación directa entre sus usuarios, marcando su evolución hacia un ecosistema social más completo