La Realidad, lo más increíble que tenemos

Los tres pilares del aprendizaje automático: supervisado, no supervisado y por refuerzo

Tecnología15/03/2024 IGNACIO MANUEL FERNANDEZ

 La Newsletter de Gustavo Reija - Economista-CEO NETIA GROUP

Informe Privado Semanal - Suscripción Mensual (4 informes) con MERCADOPAGO

Captura de pantalla 2025-03-22 191711

 

 

Siguiendo la línea de la nota "¿Qué es Machine Learning?" 

En la nota anterior, exploramos el concepto de Machine Learning (Aprendizaje Automático) a grandes rasgos, definiendo su esencia y destacando su impacto en la sociedad actual. Ahora, profundizaremos en los tres tipos principales de aprendizaje automático: supervisado, no supervisado y por refuerzo.

 1. Aprendizaje supervisado:

En este tipo de aprendizaje, el sistema recibe un conjunto de datos con ejemplos etiquetados. A partir de estos ejemplos, el sistema aprende a realizar una tarea específica, como clasificar correos electrónicos como spam o no spam, o predecir el precio de una vivienda.

Ejemplos de algoritmos:

·          K-Nearest Neighbors (KNN)

·          Regresión lineal

·          Regresión logística

·          Máquinas de vectores de soporte (SVM)

·          Redes neuronales

 2. Aprendizaje no supervisado:

En este tipo de aprendizaje, el sistema no recibe ejemplos etiquetados. Debe encontrar patrones y relaciones en los datos por sí mismo. Se utiliza para tareas como agrupar clientes en diferentes segmentos o detectar anomalías.

·          Ejemplos de algoritmos:

·          K-means clustering

·          Análisis de componentes principales (PCA)

·          Detección de anomalías

 3. Aprendizaje por refuerzo:

En este tipo de aprendizaje, el sistema aprende a tomar decisiones en un entorno interactivo. Recibe una recompensa o penalización por cada acción que toma, y aprende a tomar las acciones que le dan la mayor recompensa a largo plazo. Se utiliza para entrenar robots o agentes para jugar juegos.

Ejemplos de algoritmos:

·          Q-learning

·          Deep Q-learning

·          Actor-critic

Aplicaciones de ML y Ejemplos

Las aplicaciones más frecuentes del Machine Learning son:

 Reconocimiento de Imágenes

Se utilizan diversos algoritmos para poder comprender imágenes sobre todo Deep Learning, encontrar algo en particular o agrupar zonas. Sabemos que las imágenes son conjuntos de pixeles continuos y cada uno contiene información del color que tiene que “iluminar” (por ejemplo RGB). Los ejemplos comunes son los de Reconocimiento de Caracteres ópticos, es decir, encontrar letras, agruparlas, encontrar espacios y poder descifrar textos y el otro ejemplo es el de detectar personas en imágenes, presencia humana en cámaras de seguridad o más recientemente se utilizan redes neuronales convolucionales para detectar rostros: reconocimiento facial, seguramente más de una vez Facebook fue capaz de localizar a tus primos y hermanos en tus álbumes de fotos.

 Reconocimiento de Voz

A partir de las ondas de sonido sintetizadas por el micrófono de tu ordenador, smartphone o de tu coche, los algoritmos de Machine Learning son capaces de limpiar ruido, intuir los silencios entre palabras y comprender tu idioma para interpretar tus ordenes, ya sea “Siri, Agregar un Recordatorio para el lunes que viene” o “Ok Google, Poner música de Coldplay” o hasta hacer reservas y pedir pizza. Parte del reconocimiento se hace mediante el Procesamiento del Lenguaje Natural (NLP en inglés).

 Clasificación

Consiste en identificar a que Clase pertenece cada individuo de la población que estamos analizando. Se le asignará un valor discreto de tipo 1, 0 como en la clasificación de Spam o no. También podría ser clasificar si un tumor es benigno o no o al clasificar flores según las características obtenidas.

 Salud

Dados los síntomas presentados por un paciente en una base de datos de pacientes anónimos nuestra máquina deberá ser capaz de predecir si es probable que esa persona pueda sufrir una enfermedad específica. Este tipo de Aprendizaje Automático es de suma delicadeza y puede servir como soporte para un equipo médico.

 Economía y Finanzas

Se podrá dar soporte a analistas financieros intentando predecir determinadas cotizaciones de acciones en la Bolsa, ayudando a decidir si conviene comprar, mantener o vender.

  Ignacio Manuel Fernandez - Business Analyst Prisma Medios de Pago

 

 

 

 

Últimas noticias
Te puede interesar
apple-logo-wallpaper-14

Tim Cook abre Apple a compras masivas para competir en IA

13News-Tecnología
Tecnología01/08/2025

La compañía de Cupertino experimenta un cambio estratégico fundamental en su aproximación al crecimiento corporativo, abandonando su tradicional cautela hacia las grandes adquisiciones para adoptar una postura agresivamente expansiva en el mercado de inteligencia artificial

Lo más visto
ypf-tower-puerto-madero-1111052

La Justicia de EEUU define destino acciones de YPF

13News-Internacional
Internacional12/08/2025

Una decisión judicial que podría redefinir el panorama energético argentino se resuelve este martes en Nueva York, donde la Corte de Apelaciones del Segundo Circuito determinará si el Estado nacional debe desprenderse inmediatamente del 51 por ciento accionario que mantiene en YPF

th?id=OIF

Cumbre en Alaska: Trump busca paz con Putin por Ucrania

13News-Internacional
Internacional15/08/2025

Una cita diplomática de proporciones históricas se materializa este viernes en territorio estadounidense, donde Donald Trump y Vladimir Putin intentarán delinear los contornos de una eventual resolución del conflicto ucraniano mediante negociaciones bilaterales que excluyen deliberadamente a Kiev y sus aliados europeos

Suscríbete al newsletter para recibir periódicamente las novedades en tu email