
Efecto Tasas: Compra de dólares de ahorristas cae 75% tras pico de julio
La demanda de divisas por parte del público minorista experimentó una caída dramática durante agosto, registrando una disminución del 75% respecto al nivel alcanzado en julio
Las principales causas al obtener malos resultados en Machine Learning son el overfitting o el underfitting de los datos. Cuando entrenamos nuestro modelo intentamos “hacer encajar” -fit en inglés- los datos de entrada entre ellos y con la salida
Tecnología09/05/2024 IGNACIO MANUEL FERNANDEZLas principales causas al obtener malos resultados en Machine Learning son el overfitting o el underfitting de los datos. Cuando entrenamos nuestro modelo intentamos “hacer encajar” -fit en inglés- los datos de entrada entre ellos y con la salida. Tal vez se pueda traducir overfitting como “sobreajuste” y underfitting como “subajuste” y hacen referencia al fallo de nuestro modelo al generalizar -encajar- el conocimiento que pretendemos que adquieran. Lo explicaremos a continuación con un ejemplo.
Generalización del Conocimiento
Como si se tratase de un ser humano, las máquinas de aprendizaje deberán ser capaces de generalizar conceptos. Supongamos que vemos un perro Labrador por primera vez en la vida y nos dicen “eso es un perro”. Luego nos enseñan un Caniche y nos preguntan: ¿eso es un perro? Diremos “No”, pues no se parece en nada a lo que aprendimos anteriormente. Ahora imaginemos que nuestro tutor nos muestra un libro con fotos de 10 razas de perros distintas. Cuando veamos una raza de perro que desconocíamos seguramente seremos capaces de reconocer al cuadrúpedo canino al tiempo de poder discernir en que un gato no es un perro, aunque sea peludo y tenga 4 patas.
Cuando entrenamos nuestros modelos computacionales con un conjunto de datos de entrada estamos haciendo que el algoritmo sea capaz de generalizar un concepto para que al consultarle por un nuevo conjunto de datos desconocido éste sea capaz de sintetizarlo, comprenderlo y devolvernos un resultado fiable dada su capacidad de generalización.
El problema de la Máquina al Generalizar
Si nuestros datos de entrenamiento son muy pocos nuestra máquina no será capaz de generalizar el conocimiento y estará incurriendo en underfitting. Este es el caso en el que le enseñamos sólo una raza de perros y pretendemos que pueda reconocer a otras 10 razas de perros distintas. El algoritmo no será capaz de darnos un resultado bueno por falta de “materia prima” para hacer sólido su conocimiento. También es ejemplo de “subajuste” cuando la máquina reconoce todo lo que “ve” como un perro, tanto una foto de un gato o un coche.
Por el contrario, si entrenamos a nuestra máquina con 10 razas de perros sólo de color marrón de manera rigurosa y luego enseñamos una foto de un perro blanco, nuestro modelo no podrá reconocerlo cómo perro por no cumplir exactamente con las características que aprendió (el color forzosamente debía ser marrón). Aquí se trata de un problema de overfitting.
Tanto el problema del ajuste “por debajo” como “por encima” de los datos son malos porque no permiten que nuestra máquina generalice el conocimiento y no nos darán buenas predicciones (o clasificación, o agrupación, etc.)
Overfitting en Machine Learning
Es muy común que al comenzar a aprender machine learning caigamos en el problema del Overfitting. Lo que ocurrirá es que nuestra máquina sólo se ajustará a aprender los casos particulares que le enseñamos y será incapaz de reconocer nuevos datos de entrada. En nuestro conjunto de datos de entrada muchas veces introducimos muestras atípicas (ó anomalas) o con “ruido/distorción” en alguna de sus dimensiones, o muestras que pueden no ser del todo representativas. Cuando “sobre-entrenamos” nuestro modelo y caemos en el overfitting, nuestro algoritmo estará considerando como válidos sólo los datos idénticos a los de nuestro conjunto de entrenamiento –incluidos sus defectos– y siendo incapaz de distinguir entradas buenas como fiables si se salen un poco de los rangos ya prestablecidos.
El equilibrio del Aprendizaje
Deberemos encontrar un punto medio en el aprendizaje de nuestro modelo en el que no estemos incurriendo en underfitting y tampoco en overfitting. A veces esto puede resultar una tarea muy difícil.
Para reconocer este problema deberemos subdividir nuestro conjunto de datos de entrada para entrenamiento en dos: uno para entrenamiento y otro para la Test que el modelo no conocerá de antemano. Esta división se suele hacer del 80% para entrenar y 20%. El conjunto de Test deberá tener muestras diversas en lo posible y una cantidad de muestras suficiente para poder comprobar los resultados una vez entrenado el modelo.
Cuando entrenamos nuestro modelo solemos parametrizar y limitar el algoritmo, por ejemplo la cantidad de iteraciones que tendrá o un valor de “tasa de aprendizaje” (learning-rate) por iteración y muchos otros. Para lograr que nuestro modelo dé buenos resultados iremos revisando y contrastando nuestro entrenamiento con el conjunto de Test y su tasa de errores, utilizando más o menos iteraciones, etc. hasta dar con buenas predicciones y sin tener los problemas de over-under-fitting.
Prevenir el Sobreajuste de datos
Para intentar que estos problemas nos afecten lo menos posible, podemos llevar a cabo diversas acciones.
· Cantidad mínima de muestras tanto para entrenar el modelo como para validarlo.
· Clases variadas y equilibradas en cantidad: En caso de aprendizaje supervisado y suponiendo que tenemos que clasificar diversas clases o categorías, es importante que los datos de entrenamiento estén balanceados. Supongamos que tenemos que diferenciar entre manzanas, peras y bananas, debemos tener muchas fotos de las 3 frutas y en cantidades similares. Si tenemos muy pocas fotos de peras, esto afectará en el aprendizaje de nuestro algoritmo para identificar esa fruta.
· Conjunto de Test de datos. Siempre subdividir nuestro conjunto de datos y mantener una porción del mismo “oculto” a nuestra máquina entrenada. Esto nos permitirá obtener una valoración de aciertos/fallos real del modelo y también nos permitirá detectar fácilmente efectos del overfitting /underfitting.
· Parameter Tunning o Ajuste de Parámetros: deberemos experimentar sobre todo dando más/menos “tiempo/iteraciones” al entrenamiento y su aprendizaje hasta encontrar el equilibrio.
· Cantidad excesiva de Dimensiones (features), con muchas variantes distintas, sin suficientes muestras. A veces conviene eliminar o reducir la cantidad de características que utilizaremos para entrenar el modelo. Una herramienta útil para hacerlo es PCA.
· Quiero notar que si nuestro modelo es una red neuronal artificial –deep learning-, podemos caer en overfitting si usamos capas ocultas en exceso, ya que haríamos que el modelo memorice las posibles salidas, en vez de ser flexible y adecuar las activaciones a las entradas nuevas.
Si el modelo entrenado con el conjunto de train tiene un 90% de aciertos y con el conjunto de test tiene un porcentaje muy bajo, esto señala claramente un problema de overfitting.
Si en el conjunto de Test sólo se acierta un tipo de clase (por ejemplo “peras”) o el único resultado que se obtiene es siempre el mismo valor será que se produjo un problema de underfitting.
En Resumen
Siempre que creamos una máquina de aprendizaje deberemos tener en cuenta que pueden caer en uno de estos problemas por no poder generalizar correctamente el conocimiento. Underfitting indicará la imposibilidad de identificar o de obtener resultados correctos por carecer de suficientes muestras de entrenamiento o un entrenamiento muy pobre. Overfitting indicará un aprendizaje “excesivo” del conjunto de datos de entrenamiento haciendo que nuestro modelo únicamente pueda producir unos resultados singulares y con la imposibilidad de comprender nuevos datos de entrada.
Ignacio Manuel Fernandez - Business Analyst Prisma Medios de Pago
La demanda de divisas por parte del público minorista experimentó una caída dramática durante agosto, registrando una disminución del 75% respecto al nivel alcanzado en julio
El panorama electoral argentino se intensifica con declaraciones explosivas del economista José Luis Espert, candidato de La Libertad Avanza en la provincia de Buenos Aires, quien lanzó una ofensiva verbal sin precedentes contra la coalición kirchnerista
La estrategia de Mark Zuckerberg para dominar el futuro de la inteligencia artificial ha desencadenado una crisis interna en Meta que amenaza con desestabilizar la estructura de talentos de la compañía tecnológica
Una declaración inesperada de Elon Musk ha sacudido el panorama tecnológico al reconocer públicamente que Google mantiene la posición más ventajosa para liderar el desarrollo de inteligencia artificial a nivel global
Los efectos disruptivos de la inteligencia artificial en el mercado laboral estadounidense comienzan a manifestarse con especial intensidad entre los profesionales tecnológicos de menor edad, según revela un análisis divulgado por Goldman Sachs
La industria tecnológica asiste a una declaración revolucionaria que podría redefinir el panorama de las aplicaciones móviles
La compañía liderada por Sam Altman ha presentado oficialmente su quinta generación de inteligencia artificial generativa, marcando un hito tecnológico que promete revolucionar la interacción entre humanos y sistemas automatizados
El laureado Nobel de Física Geoffrey Hinton planteó recientemente una preocupación fundamental sobre la evolución futura de los sistemas de inteligencia artificial: la posibilidad de que estos desarrollen métodos de comunicación interna completamente inaccesibles para la comprensión humana
La industria tecnológica experimentó un momento histórico esta semana cuando Microsoft Corporation decidió romper años de opacidad financiera al divulgar por primera vez las cifras exactas de ingresos de su división de computación en la nube
La compañía de Cupertino experimenta un cambio estratégico fundamental en su aproximación al crecimiento corporativo, abandonando su tradicional cautela hacia las grandes adquisiciones para adoptar una postura agresivamente expansiva en el mercado de inteligencia artificial
La administración estadounidense intensifica su estrategia para evitar restricciones regulatorias sobre inteligencia artificial mediante un mecanismo de presión financiera dirigido hacia los gobiernos estaduales
Una decisión judicial que podría redefinir el panorama energético argentino se resuelve este martes en Nueva York, donde la Corte de Apelaciones del Segundo Circuito determinará si el Estado nacional debe desprenderse inmediatamente del 51 por ciento accionario que mantiene en YPF
La diplomacia internacional experimenta un momento decisivo con la confirmación oficial del encuentro entre los mandatarios de Rusia y Estados Unidos, programado para desarrollarse en territorio estadounidense
Una cita diplomática de proporciones históricas se materializa este viernes en territorio estadounidense, donde Donald Trump y Vladimir Putin intentarán delinear los contornos de una eventual resolución del conflicto ucraniano mediante negociaciones bilaterales que excluyen deliberadamente a Kiev y sus aliados europeos
El líder ruso Vladimir Putin ofreció su respaldo explícito a las declaraciones del presidente estadounidense Donald Trump durante una cumbre celebrada en Alaska
El sistema financiero argentino atraviesa una turbulencia monetaria sin precedentes que amenaza con desestabilizar la frágil recuperación económica
Las fuerzas políticas argentinas completaron la definición de sus principales nombres para los comicios del 26 de octubre, consolidando un mapa electoral que evidencia las estrategias territoriales y las alianzas forjadas en los últimos meses
El encuentro celebrado en territorio alaskeño entre Donald Trump y Vladimir Putin marca un punto de inflexión en el conflicto ucraniano que ha redefinido las dinámicas geopolíticas europeas durante los últimos tres años
Esta proyección surge tras analizar el impacto limitado que tuvo la escalada del tipo de cambio en la última semana del mes anterior sobre la estructura de costos empresariales
La configuración definitiva de candidaturas para los comicios legislativos del 26 de octubre reveló un nuevo mapa de poder político argentino, donde la secretaria General de la Presidencia se posicionó como figura dominante del oficialismo